Evaluation of Asphalt Mixtures Containing RAP and/or RAS with Recycling Agents

Louay N. Mohammad Sam Cooper, Jr.

Department of Civil and Environmental Engineering
Louisiana Transportation Research Center
Louisiana State University

FHWA Asphalt Mixture Expert Task Group Fall River, MA April 7-10, 2015

The Story!

Part 1

- Background
- Objective/Scope
- Methodology
 - Mixture Design
 - Availability of RAS and/or RAP Binder
 - With and Without Recycling Agents
 - Laboratory Mechanical Tests
- Results
- Summary

Part 2

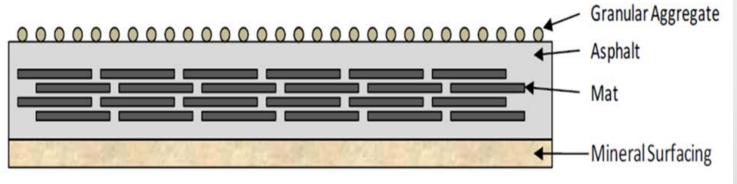
Pool Fund Study TPF 5(294)

Background

- Practice of utilizing RAP and/or RAS in new asphalt mixtures has increased in recent years
 - economic and environmental benefits
- RAP has most widely used materials

Wearing Course: 15%

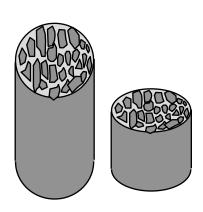
Binder Course: 20%


Base Course: 30%

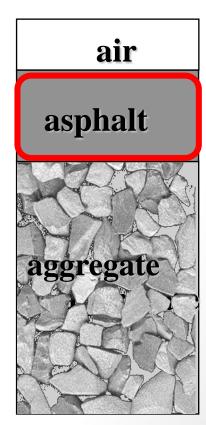
- RAS has emerged as a material of interest to the paving community
- RAP and/or RAS valuable components in asphalt mixtures
 - With increased demand and limited supply of aggregate and binder
- Potential benefits are high on use high percentages of RAP and RAS
 - state agencies have not proceeded to use high percentages of RAP on their roadways
 - non-uniformity of RAP materials
 - agency's lack of confidence in the long term performance data and specifications.
 - problem is further augmented when RAS is used in conjunction with RAP

Recycles Asphalt Shingles

- Asphalt binder
 - 18 to 30%
- Mineral matter
 - 40 to 60%
 - granules and fillers
- Fibers
 - 8 to 12%


Asphalt Mixture Design

- Optimum asphalt cement content
 - Asphalt Binder from RAS and/or RAP
 - Availability
 - Quality



Total Volume

Total Mass

Use of RAS in Asphalt Mixtures

- AASHTO MP 15-09 AASHTO MP 23-14
 - Use of RAS as an Additive in Hot Mix Asphalt (Asphalt)
- Provides Standard definitions for RAS
- Process RAS
 - 100% passing 12.5-mm sieve
 - Allows blending of RAS with fine aggregate
 - Prevent agglomeration
 - Addresses deleterious materials

Standard Specification for

Reclaimed Asphalt Shingles for Use in Asphalt Mixtures

AASHTO Designation: MP 23-141

How to incorporate RAS in Asphalt Mixtures

- AASHTO PP53 AASHTO PP 78-14
 - Standard Practice for Design Considerations When Using RAS in Asphalt Mixtures
- Design Considerations When Using RAS in Asphalt Mixtures
- Determining the Shingle Aggregate Gradation and Specific Gravity
- Determining Adjustment to the New Asphalt Binder Grade

Note 6—The RAS asphalt binder availability factor is assumed to range from 0.70 to 0.85 for this practice. Additional research is required to define the interaction of asphalt binder from RAS.

Standard Practice for

Design Considerations When Using Reclaimed Asphalt Shingles (RAS) in Asphalt Mixtures

AASHTO Designation: PP 78-14¹

Objective

- Laboratory Performance at high, intermediate, and low temperature
 - mixtures containing RAS and/or RAP
 - Effect of recycling agents (RAs)

• 12.5 mm Asphalt Mixture

RAS: Post-Consumer

Binder: PG 70-22M

Mix ID	Mix Code	RAP	RAS	Recycling Agent
Mix 1	70CO	0	0	None
Mix 2	70PG5P	0	5	None
Mix 3	52PG5P-RA 1	0	5	PG 52-28
Mix 4	70PG5P-RA 2	0	5	5% V. D. O.
Mix 5	70PG5P-RA 3	0	5	12% N.O.
Mix 6	70PG5P-RA 4	0	5	20% S.A.
Mix 7	70PG5P15RAP-RA 2	15	5	(0.75% + 5%) V. D. O.
Mix 8	70PG5P_B-RA 5	0	5	15% REOB

• 12.5 mm Asphalt Mixture

RAS: Post-Consumer

Binder: PG 70-22M

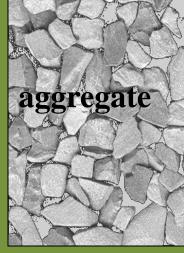
Mix ID	Mix Code	RAP	RAS	Recycling Agent
Mix 1	70CO	0	0	None
Mix 2	70PG5P	0	5	None
Mix 3	52PG5P-RA 1	0	5	PG 52-28
Mix 4	70PG5P-RA 2	0	5	5% V. D. O.
Mix 5	70PG5P-RA 3	0	5	12% N.O.
Mix 6	70PG5P-RA 4	0	5	20% S.A.
Mix 7	70PG5P15RAP-RA 2	15	5	(0.75% + 5%) V. D. O.
Mix 8	70PG5P_B-RA 5	0	5	15% REOB

• 12.5 mm Asphalt Mixture

RAS: Post-Consumer

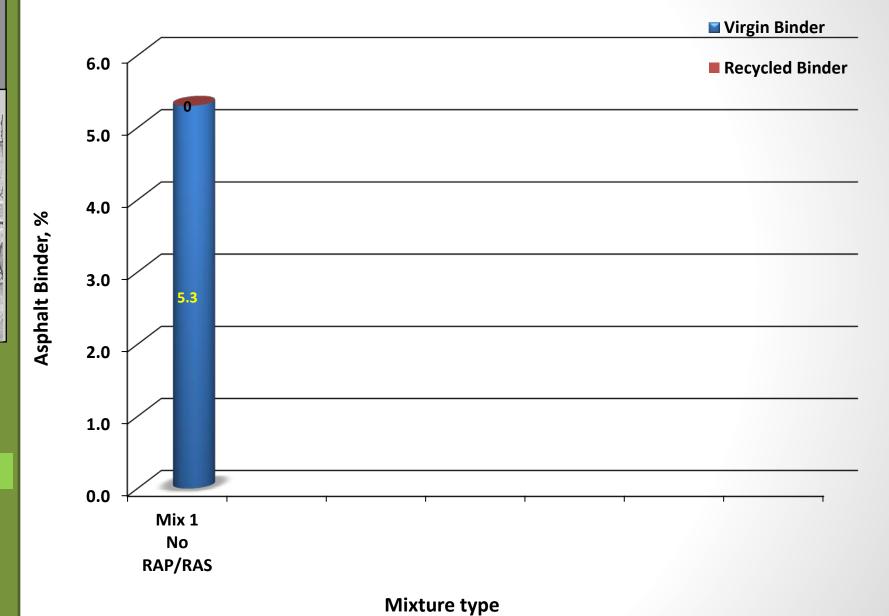
• Binder: PG 70-22M

Mix ID	Mix Code	RAP	RAS	Recycling Agent
Mix 1	70CO	0	0	None
Mix 2	70PG5P	0	5	None
Mix 3	52PG5P-RA 1	0	5	PG 52-28
Mix 4	70PG5P-RA 2	0	5	5% V. D. O.
Mix 5	70PG5P-RA 3	0	5	12% N.O.
Mix 6	70PG5P-RA 4	0	5	20% S.A.
Mix 7	70PG5P15RAP-RA 2	15	5	(0.75% + 5%) V. D. O.
Mix 8	70PG5P_B-RA 5	0	5	15% REOB

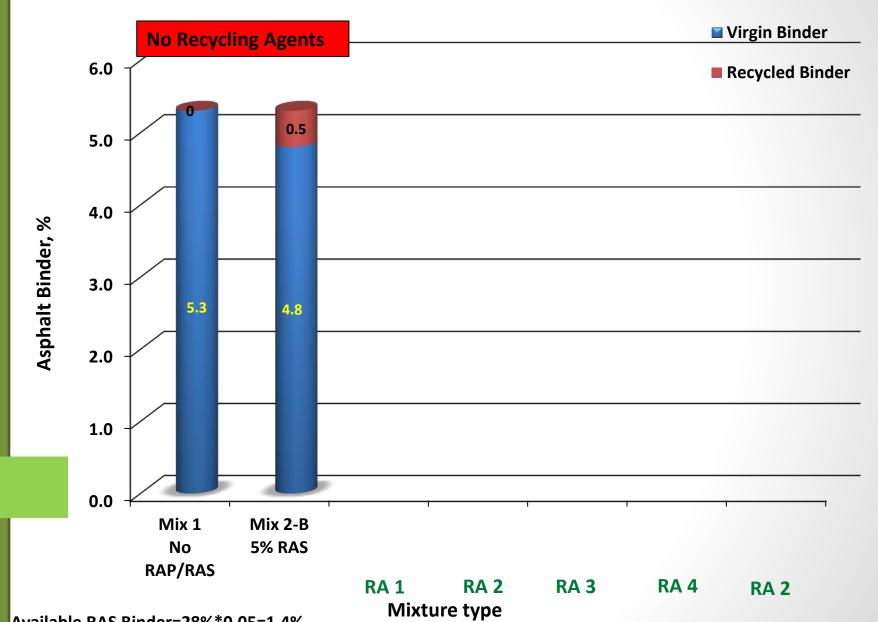

• 12.5 mm Asphalt Mixture

RAS: Post-Consumer

Binder: PG 70-22M


Mix ID	Mix Code	RAP	RAS	Recycling Agent
Mix 1	70CO	0	0	None
Mix 2	70PG5P	0	5	None
Mix 3	52PG5P-RA 1	0	5	PG 52-28
Mix 4	70PG5P-RA 2	0	5	5% V. D. O.
Mix 5	70PG5P-RA 3	0	5	12% N.O.
Mix 6	70PG5P-RA 4	0	5	20% S.A.
Mix 7	70PG5P15RAP-RA 2	15	5	(0.75% + 5%) V. D. O.
Mix 8	70PG5P_B-RA 5	0	5	15% REOB

air asphalt



Mix 1 = 70CO

Design Consideration – OAC=5.3%

Design Consideration – OAC=5.3%

Mix 1 = 70CO Mix 2 = 70PG5P

Available RAS Binder=28%*0.05=1.4%

Mixture Design Concerns

	%RAS Total AC Content	%RAS in Mix Design	%RAS AC Binder Available
PCWS	28.6	5.0	1.4

Classes of Recycling Agents

REJUVENATING AGENTS	SOFTENING AGENTS	
Lube Extracts	Lube Stock	
Extender Oils (aromatic oils)	Lubricating or Crankcase Oil	
Anti-Stripping Agent	REOB (RA-5)	
Naphthenic Oil (RA-3)	Asphalt Flux Oils	
Vegetable Derived Oils (RA-2)	Soft Asphalt Binders (RA-1)	

Purpose of Recycling Agents

- Softening Agents
 - lower the viscosity of the <u>aged binder</u>
- Rejuvenators
 - help restore physical and chemical properties of <u>aged binder</u>
 - contain a high proportion of maltene constituents

Mixture Design Concerns

		%RAS Total AC Content	%RAS in Mix Design	%RAS AC Binder Available
PC	SWS	28.6	5.0	1.4

Classes of Recycling Agents


REJUVENATING AGENTS	SOFTENING AGENTS	
Lube Extracts	Lube Stock	
Extender Oils (aromatic oils)	Lubricating or Crankcase Oil	
Anti-Stripping Agent	REOB – RA 5	
Naphthenic Oil (NO) – RA 3	Asphalt Flux Oils – RA 4	
Vegetable Derived Oils (VDO) – RA 2	Soft Asphalt Binders – RA 1	

Purpose of Recycling Agents

- Softening Agents
 - lower the viscosity of the <u>aged binder</u>
- Rejuvenators
 - help restore physical and chemical properties of <u>aged binder</u>
 - contain a high proportion of maltene constituents

Asphalt Binder, %

Design Consideration – OAC=5.3%

Mix 1 = 70CO

Mix 2 = 70PG5P

Mix 3 = 52PG5P-RA 1


Mix 4 = 70PG5P-RA 2

Mix 5 = 70PG5P-RA 3

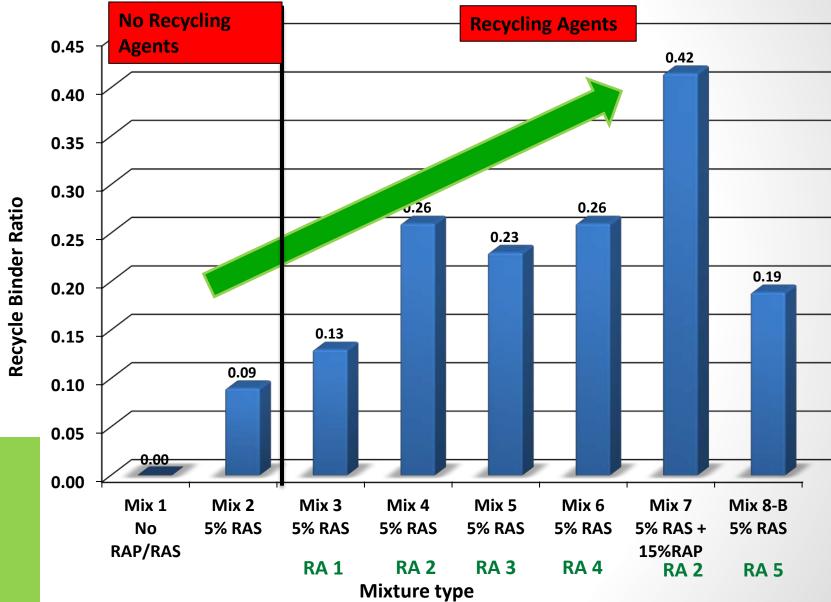
Mix 6 = 70PG5P-RA 4

Asphalt Binder, %

Design Consideration – OAC=5.3%

Mix 1 = 70CO

Mix 2 = 70PG5P


Mix 3 = 52PG5P-RA 1

Mix 4 = 70PG5P-RA 2

Mix 5 = 70PG5P-RA 3

Mix 6 = 70PG5P-RA 4

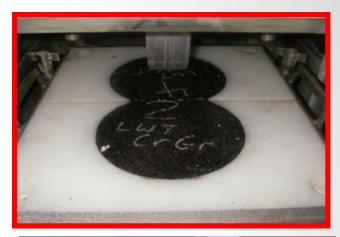
Effect of RAs on Recycled Binder Ratio

Mix 1 = 70CO

Mix 2 = 70PG5P

Mix 3 = 52PG5P-RA 1

Mix 4 = 70PG5P-RA 2


Mix 5 = 70PG5P-RA 3

Mix 6 = 70PG5P-RA 4

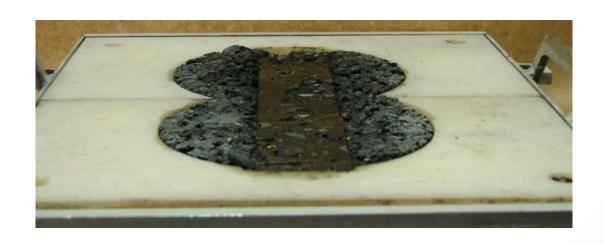
Laboratory Performance Tests

- High temperature Performance
 - Loaded Wheel Tracking Test
- Intermediate temperature Performance
 - Semi-Circular Bending Test
- Low temperature performance
 - Thermal Stress Restrained Specimen
 Test
- Triplicates
 - VTM: 7 ± 0.5%

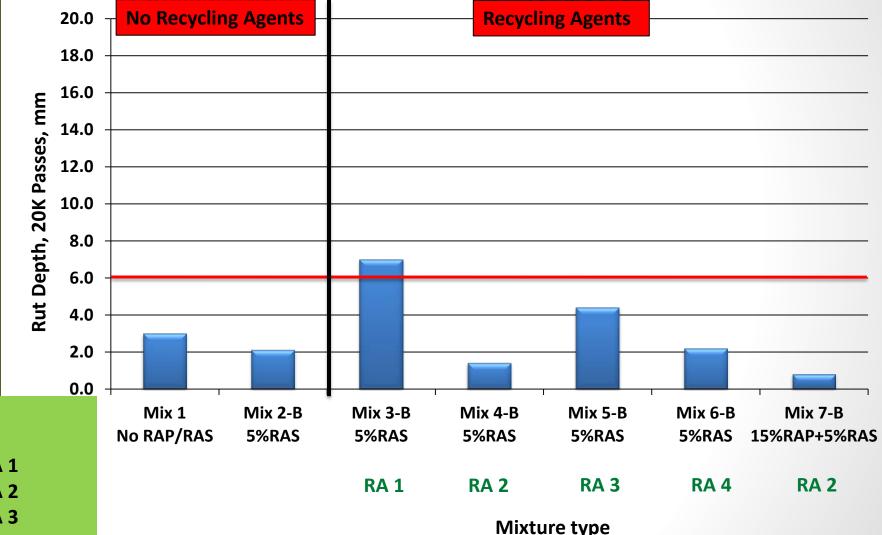
Thermal Cracking

Fatigue Cracking

Permanent Deformation



Results



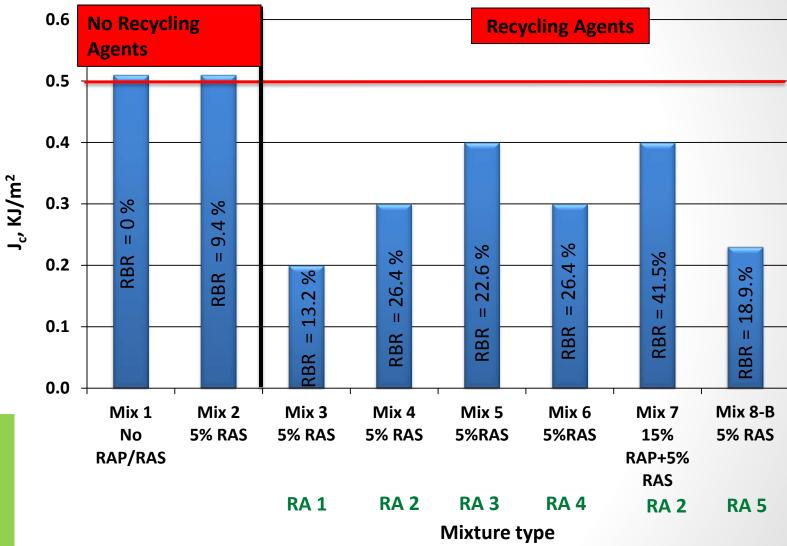
Loaded Wheel Tracking Test Results, 50°C

RAP and/or RAS

Mix 1 = 70CO

Mix 2 = 70PG5P

Mix 3 = 52PG5P-RA 1


Mix 4 = 70PG5P-RA 2

Mix 5 = 70PG5P-RA 3

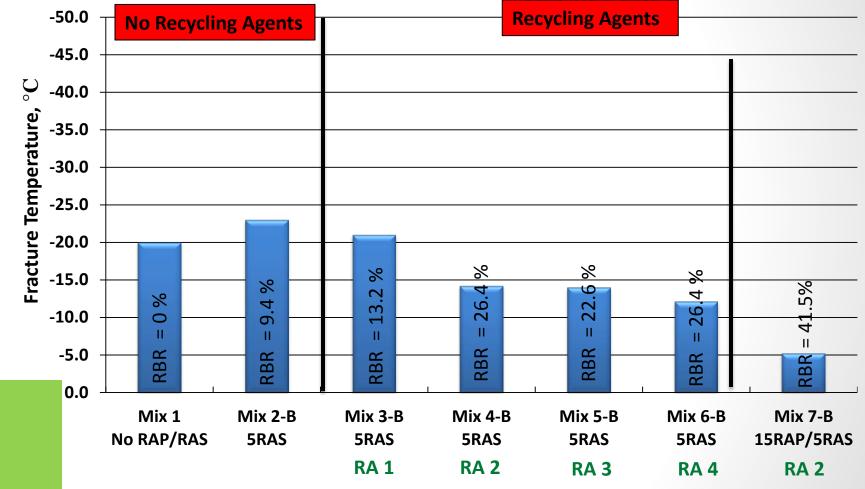
Mix 6 = 70PG5P-RA 4

Semi-Circular Bend Test Results, 25°C

RAP and/or RAS

Mix 1 = 70CO

Mix 2 = 70PG5P


Mix 3 = 52PG5P-RA 1

Mix 4 = 70PG5P-RA 2

Mix 5 = 70PG5P-RA 3

Mix 6 = 70PG5P-RA 4

Thermal Stress Restrained Specimen Test RAP and/or RAS

Mixture type

Mix 2 = 70PG5P Mix 3 = 52PG5P-RA 1 Mix 4 = 70PG5P-RA 2

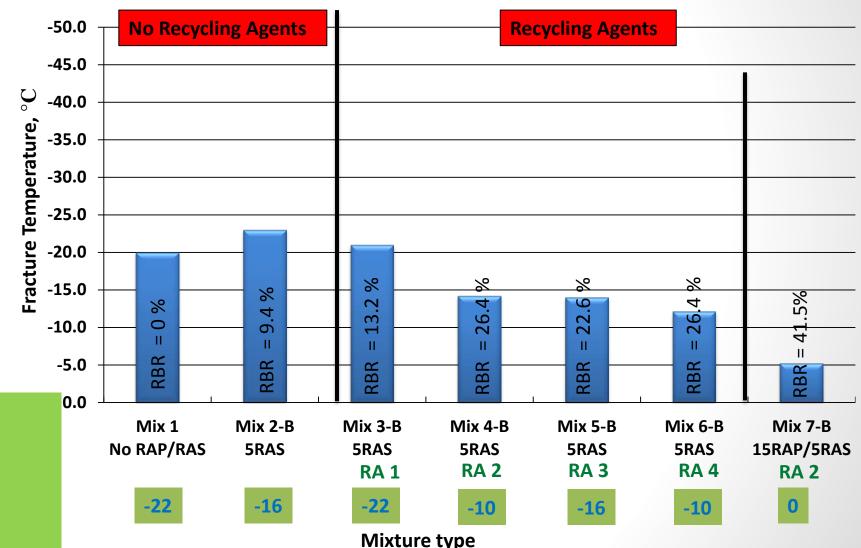
Mix 1 = 70CO

Mix 5 = 70PG5P-RA 3

Mix 6 = 70PG5P-RA 4

Mix 1 = 70CO

Mix 2 = 70PG5P


Mix 3 = 52PG5P-RA 1

Mix 4 = 70PG5P-RA 2

Mix 5 = 70PG5P-RA 3 Mix 6 = 70PG5P-RA 4

Mix 7 = 70PG5P15RAP-RA 2

Thermal Stress Restrained Specimen Test RAP and/or RAS

Summary of Performance *Mixes Containing RAS and/or RAP as Compared to Control Mixture*

Mixture	High Temp (LWT)	Intermediate Temp (SCB)	Low Temp (TSRST)
70PG5P			
52PG5P-RA 1			
70PG5P-RA 2			
70PG5P-RA 3			
70PG5P-RA 4			
70PG5P15RAP-RA 2			

Summary of Performance *Mixes Containing RAS and/or RAP as Compared to Control Mixture*

Mixture	High Temp (LWT)	Intermediate Temp (SCB)	Low Temp (TSRST)
70PG5P			
52PG5P-RA 1			
70PG5P-RA 2	4		
70PG5P-RA 3	-		
70PG5P-RA 4			
70PG5P15RAP-RA 2	-		

Summary

- Asphalt mixture design
 - Availability of asphalt binder from RAS and/or RAS
 - With and Without RAs
 - -0.36 1.0
- Quality of the Asphalt binder
 - Laboratory test
 - Criteria
- Effect of Recycling Agents
 - Use of RAs did enhance the extraction of RAS binder
- High Temperature Performance, LWT
 - All mixtures performed well
 - Addition of RAS and/or RAP increased mixtures resistance to rutting

Summary

- Intermediate Temperature Performance, SCB
 - Mixes with NRAs
 - No adverse effects
 - Design approach considered
 - Mixes with RAs
 - Lower Jc values
 - Varied with type of RA
 - Low Temperature Performance, TSRST
 - Mixes with NRAs
 - No adverse effects
 - Mixes with RAs
 - Reduction in Fracture temperature
 - Fracture temperature did track the low temp PG grade of binder

Develop Mix Design and Analysis Procedures for Asphalt Mixtures Containing High-RAP Contents – TPF 5(294)

Transportation Pool Fund Program

http://www.pooledfund.org/Details/Study/536

Transportation Pooled Fund Program

Home | About TPF | How to Participate | Open Solicitations | Search | Forms | Success Stories | Related Links | Email Alerts

Home > Home > Search Solicitations and Studies > Study Detail View Study Detail View

Study Detail View

Design and Analysis Procedures for Asphalt Mixtures Containing High-RAP Contents and/or RAS

General Information

Study Number: TPF-5(294) Status: Cleared by FHWA

Lead Agency: Louisiana Department of Transportation and Development

Contract Start Date: Est. 0

Est. Completion Date:

Contract/Other Number: Last Updated: Oct 30, 2013

Contract End Date:

Partners: CO , FL , LA Contact Information:

Lead Agency Contact(s):

Harold Paul harold.paul@la.gov Phone: (§) 225-767-9101

FHWA Technical Liaison(s):

Jack Youtcheff

Jack.Youtcheff@fhwa.dot.gov Phone: 3 202-493-3090

Financial Summary:

Contract Amount: Total Commitments Received: \$196,000.00 100% SP&R Approval: Approved

Commitments by Organization:

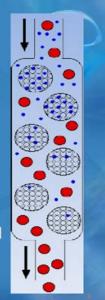
Agency	Year	Commitments
Colorado Department of Transportation	2013	\$28,000.00
Florida Department of Transportation	2012	\$28,000.00
Florida Department of Transportation	2013	\$28,000.00
Florida Department of Transportation	2014	\$28,000.00
Louisiana Department of Transportation and Development	2012	\$28,000.00
Louisiana Department of Transportation and Development	2013	\$28,000.00
Louisiana Department of Transportation and Development	2014	\$28,000.00

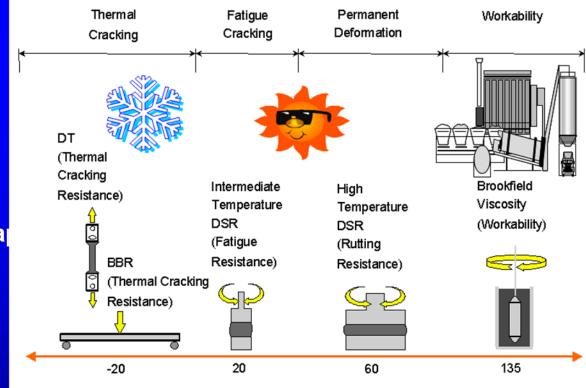
Jective Objective

- Evaluate mechanical (fatigue/fracture) tests that can be conducted on plant mixtures (lab or field compacted) from participating states into establish guidelines for use when ranking the quality of RAP and or RAP/RAS mixtures as compared to virgin mixtures.
- Criteria

Approach

- Two field projects
 - Each field project
 - Two mixtures: Conventional, RAP and/or RAS
 - Conventional may include 15% RAP
 - Four mixtures
- Collect Mix Design / Pavement Design Record
 - JMF
 - Loose mixtures
 - Cores
 - Challenging
- Standard Materials Characterization
 - Binder
 - Solvent Extraction
 - Aggregate properties
 - Mixture


Binder Experiment


Binder Rheology

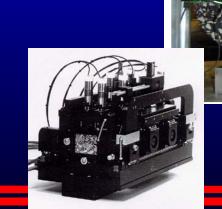
- PG grading
- MSCR
- GPC (Gel permeation chromatogra)
- LAS
- Others

GPC

- GPC separates molecules on the basis of size (like sieving!).
- When a mixture of molecules dissolved in a solvent is applied to the top of the column, the smaller molecules are distributed through a larger volume of gel than is available to the large molecules. Consequently, the large molecules move more rapidly through the column, and in this way the mixture can be separated (fractionated) into its components.

Pavement Temperature, °C

AGILENT 1100 GPC SYSTEM


*http://users.ron.com/jkimita-il.ma.ultranet/BiologyPages/E/ExclusionChrom.html

Mixture Experiment

- Specimen Types
 - Laboratory mixed laboratory compacted (LL)
 - Plant produced laboratory compacted (PL
 - Plant Produced Field Compacted (Cores)
 - Challenging
 - Triplicates
- Fracture/fatigue testing
 - Semi-circular bend test, SCB
 - Overlay tester test, OT
 - Energy Ratio Test
 - Beam Fatigue Test
 - pseudo visco-elastic continuum damage, SVECD
 - » Pull/Push test
- Per mixture and Specim
 - 5 tests x 3 = 15 mixes

Data Analysis

- Each test will be ranked
 - Standard test method
 - Field verification/Criteria
 - Cost of Equipment
 - Time required
 - Sample preparation
 - Testing
 - Analysis
 - Level of difficulties
 - requiring highly-trained personnel
- Develop a score card

